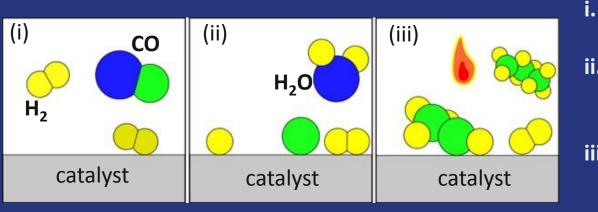
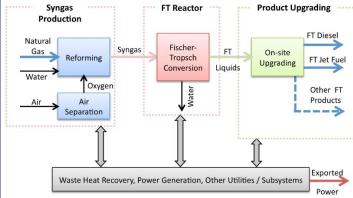
CLEAN FUELS & CHEMICALS GROUP

Dr. M.K. Gnanamani Senior Research Scientist

Dr. Burtron H. Davis Associate Director


What does this group do?



Gas-to-liquid technology (GTL) also known as Fischer-Tropsch synthesis (FTS).

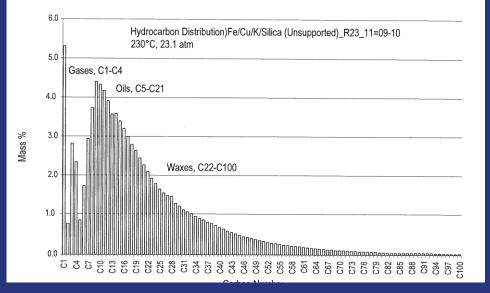
 ✓ Conversion of syngas (a mixture of CO and H₂) into liquid transportation fuels
✓ In presence of Fe, Co or Ru catalysts
✓ T=200-350°C & P=20-30 atm

Fischer-Tropsch Chemistry

- Hydrogen and carbon monoxide flow to the catalyst
- ii. Hydrogen and carbon "stick" to the catalyst, water diffuses away
- iii. Hydrocarbon chains form gasoline, jet fuel, diesel

Advantages of FT fuels

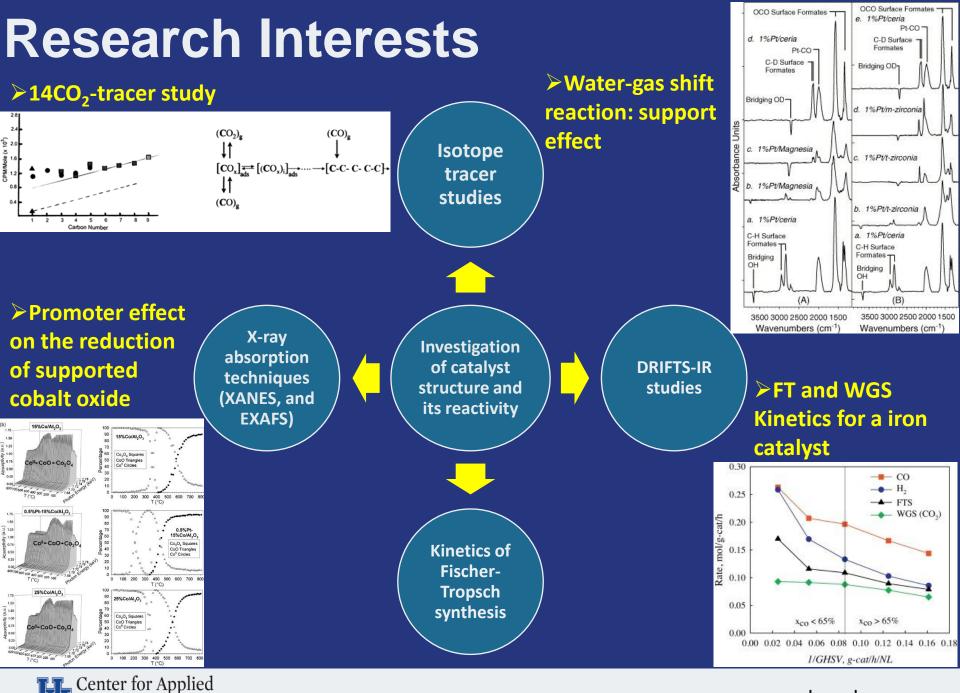
 ✓ US Energy Policy Act of 1992 designates GTL products derived from natural gas as an "alternative fuels"


- ✓ Minimize environmental impacts
- ✓ It can be used directly or blended with conventional fuels
- ✓ GTL gasoline and GTL jet fuel are virtually sulfur free
- ✓ GTL diesel has higher cetane number

"FT" a versatile process

Name	Carbon atoms per molecule	Uses
Gases	1 to 4	Fuel
Petrol	4 to 9	Fuel for cars
Naphtha	8 to 14	Chemicals
Paraffin	10 to 16	Aircraft fuel
Diesel	15 to 20	Lorry fuel
Residue	More than 20	Lubricating oil, tar, wax etc.

Oil Fractions


Hydrocarbons as fuel with varying carbon numbers

Typical product distributions from FT process

Problems:

- ✓ Highly exothermic heat control
- ✓ Methane Selectivity
- ✓ Maximize the selectivity to desired product
- ✓ Mechanism of FT reaction more complex

L Energy Research

Facilities

Analytical equipment:

- GC-FID 4 units (Agilent-7890), GC-MS, Sulfur analyzer (SRI-GC). CO and CO₂ analyzers.

Catalyst characterization techniques:

- BET surface area analyzer (Micromeritics)
- TPR/TPO (Altimara)
- FT-IR attached to DRIFTS cell for insitu analysis
- HR-TEM, XANES and EXAFS (external)

Catalyst testing equipment:

- 1L CSTR (22 reactors), Bench-scale fixed bed reactors (2 units), small fixed-bed reactors (6 units)

Additional Information

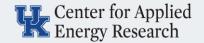
• Where does the CFC group get funding from?

Catalyst producing company (e.g. Clariant); Department of Energy; NASA.

Where does the CFC group publish?

All major catalysis related journals such as ACS catalysis; Journal of Catalysis; ChemCatChem; RSC Advances; Applied Catalysis; Catalysis Today; Catalysts; Chemical Reviews; Catalysis Science and Technology.

Where does the CFC group present its results?


AICHE; ACS; North American Catalysis; Tri-state Catalysis Society meetings.

Where do students that work in the CFC group go afterwards?

Industry (e.g. Chevron, Clariant)

Government (e.g. National Laboratories)

Graduate School (e.g. UC Berkeley; Uni. of Alberta, Canada; Uni. of Wits, South Africa)

