Power Generation and Utility Fuels Group

Reynolds Frimpong Andy Placido Director: Kunlei Liu

PGUF Overview

Gasification

Background and Process Description

PGUF Overview

Combustion vs. Gasification

Combustion with oxygen

$$C + O_2 \longrightarrow CO_2$$
$$H_2 + \frac{1}{2} O_2 \longrightarrow H_2O$$

Partial combustion with oxygen and reactions with water

$$C + \frac{1}{2}O_{2} \longrightarrow CO$$

$$CO + H_{2}O \longrightarrow CO_{2} + H_{2}$$

$$C + H_{2}O \longrightarrow CO + H_{2}$$
Syngas

PGUF Overview

Gasification Utilization Strategies

Source: The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) / GE Texaco

PGUF Overview

January 2017

caer.uky.edu

OMB Process Flow Diagram

PGUF Overview

OMB Gasification

- OMB Enhances the Mixing and Resonance Time Distribution
- High-Temperature Reaction Reduces/Eliminates Tar Formation
- High Performance (98% carbon conversion)
- High Availability (98% as a stretch goal)
- High Load Flexible (40%-120%)
- Industrial process technology
- 38 projects (Including 1 in US), 109 gasifiers
- Total capacity > 130,000 Tons coal per day

January 2017

PGUF Overview

Gasification Unit Pictures

caer.uky.edu

PGUF Overview

Gasification Operation Pictures

450°C

600 °C

Injection of CWS in Burner C, D (Burner A, B with NG on)

2 Burner CWS gasification (Burner A, B with NG on)

Ignition of CWS in Burner C, D (Burner A, B with NG on)

4 Burner CWS gasification (Lens of endoscope fouled)

- Gasifier installed and currently being tested
- Downstream components online soon

Future Research Areas

- 1.) Host site for technology development around CTL
 - Gasification
 - Carbon Capture
 - FT
 - WGS and Refining
- 2.) Gasification Technology
 - High concentration CWS
 - Increase H/CO ratio and Reduce Downstream

Clean-up

- In-situ WGS with warm sulfur removal
- Collaboration with Catalyst group, ECUST
- Coal/Biomass Blending Gasification Research
- Dynamic Modeling and Controls

PGUF Overview

- 3.) Carbon Capture
 - New Solvents
 - New catalysts
 - New processes and technologies
- 4.) Gas Conversion by F-T Synthesis
 - Catalysts (Co, Fe, etc.)
 - Types of F-T reactors
 - Fine tuning based on selectivity of desired product(s)

caer.uky.edu

Carbon Capture

Background and Process Description

PGUF Overview

Why CO₂ Capture?

The Earth's carbon cycle

Carbon contained in the atmosphere (760 billion tons) Annual increase (3.4 billion tons/yr.)

Ref: The IPCC Fourth Assessment Report

CO₂ Capture Possibilities and Utilization

Yuan Z., Eden M.R. Industrial & Engineering Chemistry Research Pub date: Nov 30, 2015

January 2017

caer.uky.edu

Technology Development Pathway

PGUF Overview

CO₂ Capture Chemistry

Typical CO₂ Capture Flow Diagram

PGUF Overview

What Happens in the Absorber?

<u>Absorber</u> – the equipment that captures CO₂ using a chemical solvent

<u>Carbon Rich Stream</u> – the chemical solvent after it has absorbed the CO₂

- Exothermic chemical absorption
- Counter current
- Careful liquid and gas distribution
- Structured packing

What Happens in the Stripper?

<u>Stripper</u> – the equipment that regenerates the solvent and liberates the captured CO₂

<u>Carbon Lean Stream</u> – the chemical solvent after it has been regenerated and contains very little CO₂

- Heat is added with the reboiler
- Reverse the exothermic chemical absorption reaction
- Structured packing

What is Involved in the PGUF Group?

Process Modeling and Simulation Chemical Engineering Chemical Process Development Mechanical Engineering Equipment and Structural Design Analytical Chemistry Emissions Studies Solvent Chemical Changes Materials Science Metallurgy Corrosion Studies Energy Efficiency